

Evaluation of the Applicability of HTML5
for Mobile Applications in Resource-
Constrained Edge Environments

Bryan Yan
Grace A. Lewis

July 2014

TECHNICAL NOTE
CMU/SEI-2014-TN-002

Critical System Capabilities

http://www.sei.cmu.edu

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-

ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-

low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely dis-

tributed in written or electronic form without requesting formal permission. Permission is required for

any other external and/or commercial use. Requests for permission should be directed to the Software

Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0001051

CMU/SEI-2014-TN-002 | i

Table of Contents

Abstract vii

1 Introduction 1

2 Background 2
2.1 Edge Applications 2
2.2 HTML5 Mobile Applications 3
2.3 Web Application Bridging Frameworks 3

3 Initial Evaluation: HTML5 5
3.1 Geolocation 6
3.2 Wi-Fi Communication 6
3.3 Bluetooth Communication 9
3.4 Background Processing 9
3.5 Interactive UI 10
3.6 User Notification 12
3.7 Access to Files 12
3.8 Accelerometer 13
3.9 Orientation 13
3.10 Microphone 14
3.11 Compass 15
3.12 Ambient Light 16
3.13 Proximity 17
3.14 Ambient Temperature 17
3.15 Ambient Humidity 18
3.16 Atmospheric Pressure 19
3.17 Battery Status 19
3.18 Audio Playback 20
3.19 Video Playback 21
3.20 Camera 21
3.21 Vibration 22

4 Follow-Up Evaluation: Bridging Frameworks 23
4.1 PhoneGap 23

4.1.1 Notification Hybrid Mobile Application 24
4.1.2 Battery Status Hybrid Mobile Application 26

4.2 SenchaTouch 28

5 Software Architecture Implications 29
5.1 Maintainability 29

5.1.1 Evolution of HTML5 and Its Effects on HTML5 Applications 29
5.1.2 Evolution of Android OS and Its Effects on HTML5 Applications 29
5.1.3 Evolution of Bridging Frameworks and Its Effects on Hybrid Mobile Applications 31
5.1.4 Migrating Hybrid Mobile Applications to HTML5 Applications 32

5.2 Performance 34
5.2.1 Execution Time Analysis 34
5.2.2 Memory Usage Analysis 35

5.3 Portability of HTML5 Among Mobile Web Browsers 36

6 Related Work 38

CMU/SEI-2014-TN-002 | ii

7 Summary and Conclusions 39

Bibliography 41

CMU/SEI-2014-TN-002 | iii

List of Figures

Figure 1: HTML5 Code Example for Geolocation 6

Figure 2: HTML5 Code Example for Using WebSockets 8

Figure 3: HTML5 Code Example for Background Processing 9

Figure 4: Timer.js JavaScript File 10

Figure 5: HTML5 Code Example for Interactive UI 11

Figure 6: JavaScript Code Example for Accessing Files 12

Figure 7: HTML5 Code Example for Accelerometer 13

Figure 8: HTML5 Code Example for Orientation 14

Figure 9: HTML5 Code Example for Microphone 15

Figure 10: HTML5 Code Example for Compass 16

Figure 11: HTML5 Code Example for Ambient Light 17

Figure 12: HTML5 Code Example for Proximity 17

Figure 13: HTML5 Code Example for Ambient Temperature 18

Figure 14: HTML5 Code Example for Ambient Humidity 18

Figure 15: HTML5 Code Example for Atmospheric Pressure 19

Figure 16: HTML5 Code Example for Battery Status 20

Figure 17: HTML5 Code Example for Audio Playback 20

Figure 18: HTML5 Code Example for Video Playback 21

Figure 19: HTML5 Code Example for Using the Camera 22

Figure 20: HTML5 Code Example for Vibration 22

Figure 21: PhoneGap Wrapper Application for the Notification Demo 23

Figure 22: Notification Application Logic and Presentation HTML5 Web Page 25

Figure 23: Battery Status Application Logic and Presentation HTML5 Web Page 27

Figure 24: Accelerometer Application Logic and Presentation HTML5 Web Page 33

CMU/SEI-2014-TN-002 | iv

CMU/SEI-2014-TN-002 | v

List of Tables

Table 1: Edge Application Development Features 2

Table 2: HTML Support for Edge Applications 5

Table 3: Android OS Version History Related to HTML5 Support [Wikipedia 2013a] 30

Table 4: Android Google Chrome Version History Related to HTML5 Support [Wikipedia 2013b] 30

Table 5: Firefox for Android Version History Related to HTML5 Support [Wikipedia 2013c] 31

Table 6: Execution Times for a Native and an HTML5 Mobile Geolocation Application 34

Table 7: Memory Usage for a Native and an HTML5 Mobile Geolocation Application 35

Table 8: HTML5 Features Support for Android Web Browsers 36

CMU/SEI-2014-TN-002 | vi

CMU/SEI-2014-TN-002 | vii

Abstract

Mobile applications increasingly are being used by first responders and soldiers to support their
missions. These users operate in resource-constrained, edge environments characterized by dy-
namic context, limited computing resources, intermittent network connectivity, and high levels of
stress. In addition to efficient battery management, mobile applications operating in edge envi-
ronments require efficient resource usage of onboard sensors to capture, store, and send data
across networks that may be intermittent. The traditional method for building mobile applications
is to use native software development kits (SDKs) on a particular mobile platform, such as An-
droid or iOS. However, HTML5 has recently evolved to a stage where it supports many of the
development features that native SDKs support. The advantages of using HTML5 not only in-
clude cross-platform development and deployment, but also that mobile edge applications would
not have to be deployed on mobile devices, potentially leading to an easier distribution and testing
process because they simply run inside the web browser that already exists on the device. This
technical note presents an analysis of the feasibility of using HTML5 for developing mobile edge
applications, as well as the use of bridging frameworks for filling in gaps in HTML5 development
features. This note also provides a discussion of the software architecture implications of HTML5
mobile application development. The work presented in this note is the result of an independent
study in Carnegie Mellon University’s Master of Information Technology - Embedded Software
Engineering (MSIT-ESE) program.

CMU/SEI-2014-TN-002 | viii

CMU/SEI-2014-TN-002 | 1

1 Introduction

Mobile applications increasingly are being used by first responders and soldiers to support their
missions. These users operate in resource-constrained, edge environments; not only are they at the
edge of the network infrastructure, but they are also resource constrained due to dynamic context,
limited computing resources, intermittent network connectivity, and high levels of stress.

Typical mobile applications used by field personnel include face recognition, speech recognition,
natural language translation, and situational awareness. These types of applications require access
to sensors on the mobile device to capture data, and using the network interfaces to send data to
nearby servers or the cloud, if the data cannot be processed locally. The natural way to support
this type of functionality is through native1 mobile applications. However, native applications pre-
sent certain disadvantages:

 They are tied to a particular mobile platform such as Android or iOS.

 They must be deployed onto the devices typically through an app store (application store of
the mobile device manufacturers or internal to an organization from which apps can be down-
loaded).

 They require a complex testing process for each platform (many app stores have very strict
testing processes that have to be passed before an application can be made available to users).

Alternatively, HTML5 is a technology that can be used to develop mobile applications [W3C
2013]. The advantages of using HTML5 include portability across mobile device platforms as
well as mobile device capability to access functionality without having to download and install
applications. However, it is not clear that HTML5 can support all the development features re-
quired by edge applications. This paper evaluates the use of HTML5 for developing edge applica-
tions and explores the use of alternative technologies such as bridging frameworks to meet edge
application requirements.

Section 2 describes related work on using HTML5 for mobile application development. Section 3
provides background information on edge applications, HTML5 mobile applications, and hybrid
mobile applications. Section 4 presents the initial evaluation of building edge applications using
HTML5. Section 4 presents the use of bridging frameworks to satisfy some of the application de-
velopment features required by edge applications that are not met by using HTML5 alone. Section
5 describes some of the software architecture implications of developing edge applications using
HTML5. Section 6 concludes and summarizes the work.

1 Native mobile applications are developed, tested, and deployed for a specific mobile application platform (e.g.,

Android, iOS, Blackberry, Windows Phone) and installed directly onto the device itself.

CMU/SEI-2014-TN-002 | 2

2 Background

2.1 Edge Applications

We define edge applications as mobile applications operating at the edge of the network infra-
structure, to support first responders and military personnel in their execution of tasks and mis-
sions. These edge environments are characterized by

 intermittent or no connectivity to the enterprise

 a fast-paced, highly fluid and unpredictable environment due to, for example, mission chang-
es, threats, or changing weather condition

 the potential of involving large amounts of field-collected data

 resource challenges (power, computing, etc.)

 periods of very high stress and cognitive load

To deal with these characteristics, edge applications must

 exploit available sensors such that contextual information can be captured with easy and min-
imal user interaction

 process, store, and forward sensed and captured information

 be resilient to intermittent communications connectivity and opportunistic in using communi-
cation capabilities as they become available

 manage resources on the mobile device such that they are used as efficiently as possible to
maximize the availability of the system by reducing power consumption

Table 1 lists some of the mobile application development features for edge applications that are
required to satisfy the previous list of requirements, along with rationale for the features.

Table 1: Edge Application Development Features

Feature Rationale

geolocation display of user location and location of relevant events

Wi-Fi communication – client-server opportunistic communication with servers

Wi-Fi communication – peer-to-peer opportunistic communication with peers and nearby de-
vices

Bluetooth communication opportunistic communication with peers and nearby serv-
ers and devices

background processing background services for sensor gathering and communica-
tions

interactive user interface (such as
touch interface and gestures)

easy interaction with device in stressful conditions

user notification alerting of events

access to files access to configuration files, user preferences, and sensed
data

CMU/SEI-2014-TN-002 | 3

accelerometer activity recognition

orientation map panning based on the direction that the user is facing

microphone data input, triangulating the source of a sound, push-to-
talk communications

compass map panning based on the direction the user is facing

ambient light activity recognition, sensing of environmental conditions

proximity activity recognition, sensing of environmental conditions

ambient temperature activity recognition, sensing of environmental conditions

ambient humidity activity recognition, sensing of environmental conditions

atmospheric pressure activity recognition, sensing of environmental conditions

battery status mobile device battery life optimization such as reducing
low priority processes under low battery conditions

audio playback receiving information audibly

video playback receiving information visually

camera capturing surrounding environment visually

vibration alerting of events

2.2 HTML5 Mobile Applications

HTML5 is the fifth revision of the HTML specification developed by the World Wide Web Con-
sortium (W3C) [W3C 2013]. HTML5 mobile applications are similar to web applications in that
the technologies used for application development are the same: HTML, JavaScript, and CSS3.
To specifically address mobile devices, HTML5 APIs have been drafted by W3C for the use of
on-board sensors such as the accelerometer [Block 2011].

The major benefits of using HTML5 for mobile application development are the portability across
mobile platforms and an easier testing, deployment, and distribution process, because applications
do not need to be installed on mobile devices. The distribution aspect, especially, can be challeng-
ing for distributed teams operating in edge environments. However, the major drawback is that
the APIs to access the mobile devices’ hardware and on-board sensors are limited for use in edge
applications, as discussed in Section 4 of this paper.

2.3 Web Application Bridging Frameworks

Web application bridging frameworks are software packages created by third-party software de-
velopment organizations that merge the advantages of native mobile application development
with the advantages of HTML5. Examples of bridging frameworks include PhoneGap and Sen-
chaTouch. The applications created by utilizing bridging frameworks are referred to as hybrid
mobile applications. These applications have the advantage of high portability—because the
framework can compile the hybrid mobile applications to multiple mobile platforms—as well as
the ability to access on-board sensors of mobile devices.

CMU/SEI-2014-TN-002 | 4

Although developing hybrid mobile applications using bridging frameworks seems like a perfect
fit for edge application development requirements, there are problems with performance of hybrid
mobile applications. In addition, because the applications are compiled into a form of mobile app,
the distribution problem of native mobile applications remains. The details of using bridging
frameworks are discussed in Section 4.

CMU/SEI-2014-TN-002 | 5

3 Initial Evaluation: HTML5

To determine if edge applications could be developed using HTML5 technology, we started im-
plementing all the development features listed in Table 1 and testing the code on the Google
Chrome, Firefox for Android, and Dolphin web browsers, on a Google Nexus 7 tablet and a Sam-
sung Galaxy S4 smartphone, running Version 4.3 and 4.2.1 of the Android OS respectively. Table
2 shows the list of edge application development features and their corresponding HTML5 sup-
port. “Fully supported” means that the feature can be fully developed using only HTML5. “Not
currently supported” means that the feature is not currently supported by the HTML5 specifica-
tion, but a draft HTML5 specification is forming with a claim that mobile web browsers will soon
support the feature. “Not supported” means that HTML5 cannot be used to support the feature.
The details of each edge application development feature and its corresponding HTML5 support
are discussed in detail in the following subsections.

Table 2: HTML Support for Edge Applications

Edge Application Development Feature HTML5 Support as of December 2013

geolocation fully supported

Wi-Fi communication – client-server fully supported

Wi-Fi communication – peer-to-peer fully supported

Bluetooth communication not supported

background processing fully supported

interactive UI (such as touch interface and gestures) fully supported

user notification not currently supported

access to files fully supported

accelerometer fully supported

orientation fully supported

microphone fully supported

compass fully supported

ambient light not currently supported

proximity not currently supported

ambient temperature not currently supported

ambient humidity not currently supported

atmospheric pressure not currently supported

battery status not currently supported

audio playback fully supported

video playback fully supported

CMU/SEI-2014-TN-002 | 6

camera fully supported

vibration not currently supported

3.1 Geolocation

The HTML5 standard has full geolocation support for mobile devices as shown in the code exam-
ple in Figure 1. The example registers the location tracking feature of the mobile device and re-
ports the longitude, latitude, altitude, heading, speed, and accuracy of the location in plain text
format.

Figure 1: HTML5 Code Example for Geolocation

3.2 Wi-Fi Communication

There are two possible architectures for use of Wi-Fi communication to support edge applications:
client-server and peer-to-peer. In the client-server architecture, the mobile device is acting as a
client and using Wi-Fi to communicate with a server. In the peer-to-peer architecture the mobile
device is using Wi-Fi to communicate with another mobile device.

 client-server architecture: fully supported

 peer-to-peer architecture: fully supported

<!DOCTYPE html>
<html>
 <body>
 <div id="GeoDemo"></div>
 <script>
 var startTime = new Date().getTime();

 function success(pos) {
 var crd = pos.coords;
 var toPrint = "<p>Your current position is:</p>";
 toPrint += "<p>Latitude : " + crd.latitude + "</p>";
 toPrint += "<p>Longitude: " + crd.longitude + "</p>";
 toPrint += "<p>Altitude: " + crd.altitude + "</p>";
 toPrint += "<p>Heading: " + crd.heading + "</p>";
 toPrint += "<p>Speed: " + crd.speed + "</p>";
 toPrint += "<p>Accuracy within " + crd.accuracy + " meters.</p>";
 toPrint += "<p>Retrieved location in " + (new Date().getTime() - startTime) + "
 milliseconds.</p>";
 document.getElementById("GeoDemo").innerHTML = toPrint;
 navigator.geolocation.clearWatch(loc_id);
 };

 function error(err) {
 console.warn('ERROR(' + err.code + '): ' + err.message);
 document.getElementById("GeoDemo").innerHTML = "<p>Cannot access device's
 location.</p>";
 navigator.geolocation.clearWatch(loc_id);
 };

 var options = {
 enableHighAccuracy : true,
 timeout : 5000,
 maximumAge : 0
 };

 var loc_id = navigator.geolocation.watchPosition(success, error, options);

 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 7

Wi-Fi communication in the traditional client-server architecture is fully supported using the
WebSockets interface. However, the precondition is that a computing machine such as a desktop
computer or a server machine must be set up as a WebSockets server. For this reason, peer-to-
peer Wi-Fi communication is supported but cannot be achieved through HTML5 WebSockets
alone.

Figure 2 shows the code example that demonstrates the utilization of the HTML5 WebSockets
API. The code example connects to a WebSockets server set up by “echo.websocket.org” and
then sends the message “WebSockets Rocks” to that server. The server replies back with the same
message.

To support peer-to-peer Wi-Fi communication on mobile devices using HTML5 via client-side
scripting, an open source project called WebRTC enables web browsers to communicate to each
other in real time via simple JavaScript [Google 2011]. Although the communication and data
transmission that takes place between mobile devices is peer-to-peer, the initial connection setup
or “signaling” stage requires connection to a server, such as a WebSockets server or a server that
implements the Internet Communications Engine (ICE) framework [Dutton 2012].

WebRTC is a newly formed standard and is supported by Android Google Chrome version 29 as
of August 21, 2013, according to The Chromium Blog [Chromium 2013], and by Firefox for An-
droid as of September 17, 2013, according to The Mozilla Blog [Mozilla 2013a].

CMU/SEI-2014-TN-002 | 8

Figure 2: HTML5 Code Example for Using WebSockets2

2 ©2013 Kaazing Corporation. Reprinted with permission (http://www.websocket.org/echo.html).

<!DOCTYPE html>
<meta charset="utf-8" />
<title>WebSocket Test</title>
<script language="javascript" type="text/javascript">
 var wsUri = "ws://echo.websocket.org/";
 var output;
 function init() {
 output = document.getElementById("output");
 testWebSocket();
 }

 function testWebSocket() {
 websocket = new WebSocket(wsUri);
 websocket.onopen = function(evt) {
 onOpen(evt)
 };
 websocket.onclose = function(evt) {
 onClose(evt)
 };
 websocket.onmessage = function(evt) {
 onMessage(evt)
 };
 websocket.onerror = function(evt) {
 onError(evt)
 };
 }

 function onOpen(evt) {
 writeToScreen("CONNECTED");
 doSend("WebSockets Rocks");
 }

 function onClose(evt) {
 writeToScreen("DISCONNECTED");
 }

 function onMessage(evt) {
 writeToScreen('RESPONSE: ' + evt.data + '');
 websocket.close();
 }

 function onError(evt) {
 writeToScreen('ERROR: ' + evt.data);
 }

 function doSend(message) {
 writeToScreen("SENT: " + message);
 websocket.send(message);
 }

 function writeToScreen(message) {
 var pre = document.createElement("p");
 pre.style.wordWrap = "break-word";
 pre.innerHTML = message;
 output.appendChild(pre);
 }

 window.addEventListener("load", init, false);
</script>
<h2>WebSocket Test</h2>
<div id="output"></div>
</html>

CMU/SEI-2014-TN-002 | 9

3.3 Bluetooth Communication

Bluetooth communication is not supported. There are no Bluetooth specifications in the HTML5
draft, nor are there third-party client-side APIs that support Bluetooth communication in mobile
devices.

3.4 Background Processing

Background processing occurs when a process can continue to execute even when it is not the
user’s currently active process. For example, if a user is running a timer process to track the time
of an activity, and then switches to watch a video and hides the timer process (for example, using
the Home button on an Android device), the timer process should continue to run and keep track
of activity time if background processing is allowed.

Background processing of tasks is supported fully by HTML5 via the WebWorkers API specified
by W3C [Hickson 2012]. The caveat is that the browser that is running the task still must be in
running state within the Android OS. If the web browser process stops running, then the task that
was sent to the background will no longer execute.

Figure 3 shows the HTML5 code example that demonstrates the background processing capabil-
ity. The example uses a Worker object that runs in the background to count the seconds elapsed
since the last time that the HTML5 web page was opened. Note that the Worker object must take
an executable JavaScript file as a parameter. In the example, timer.js is passed into the Worker
object, which is shown in Figure 4.

Figure 3: HTML5 Code Example for Background Processing

<!DOCTYPE HTML>
<html>
 <head>
 <title>Background processing example</title>
 </head>
 <body>
 <p>
 <h1>Number of seconds since you opened this page:
 <output id="result">
 0
 </output>
 </h1>

 Notice that if you switch to another tab, or put Google Chrome to the background, the
 timer still runs. The Web Worker will stop only if the Google Chrome process is killed.
 </p>
 <script>
 var worker = new Worker('timer.js');
 worker.onmessage = function(event) {
 document.getElementById('result').textContent = event.data;
 };
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 10

Figure 4: Timer.js JavaScript File

3.5 Interactive UI

Interactive UI is fully supported by the HTML5 standard. W3C has drafted the Touch API for
mobile devices to handle simple single-point and multi-point touches for complex gestures and
gesture-based transformations [Schepers 2013].

Figure 5 shows the code example that demonstrates part of the HTML5 Touch API. The example
lets the user drag a picture around the screen: as the user holds his or her finger down on the pic-
ture and moves it around, the picture will follow the tip of the finger until the user lets go.

var timer = 0;

setInterval
(
 function()
 {
 timer ++;
 postMessage(timer);
 },
 1000
);

CMU/SEI-2014-TN-002 | 11

Figure 5: HTML5 Code Example for Interactive UI

<!DOCTYPE html>
<html>
 <head></head>
 <body onload="startup()">
 <h2>Android Users: Drag Me!</h2>
 <br \="">
 <div id="TouchDemo">
 <img style="border: 10px solid ; width: 150px; height: 200px;"
 src="Turnipe_Cake_TO.jpg" alt="">
 </div>
 <script>
 //global variables to keep track of the picture's location
 var el = document.getElementById("TouchDemo");
 var posX = 0, posY = 0, lastPosX = 0, lastPosY = 0;

 function startup() {
 el.addEventListener("touchstart", handleStart, false);
 el.addEventListener("touchend", handleEnd, false);
 el.addEventListener("touchcancel", handleCancel, false);
 el.addEventListener("touchleave", handleEnd, false);
 el.addEventListener("touchmove", handleMove, false);
 }

 function handleStart(evt) {
 evt.preventDefault();
 posX = evt.touches[0].pageX;
 posY = evt.touches[0].pageY;
 }

 function handleMove(evt) {
 evt.preventDefault();
 el = document.getElementById("TouchDemo");

 //the new positions of the image,
 //but needs to be offset by the height and width to center the drag
 posX = evt.touches[0].pageX + lastPosX - 90;
 posY = evt.touches[0].pageY + lastPosY - 150;

 if (posX < 0) {
 posX = 0;
 }
 if (posY < 0) {
 posY = 0;
 }
 //the major method for altering the image, there is also rotation and scale
 var transform = "translate3d(" + posX + "px," + posY + "px, 0)";
 el.style.webkitTransform = transform;
 }

 function handleEnd(evt) {
 evt.preventDefault();
 lastPosX = evt.touches[0].pageX;
 lastPosY = evt.touches[0].pageY;
 }

 function handleCancel(evt) {
 evt.preventDefault();
 }
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 12

3.6 User Notification

User notification is defined as the alert texts, sounds, or device vibration that the user receives
when an important event has occurred, such as when receiving a text message from another user
even if the text messaging application is not open in the foreground.

The user notification feature is not currently supported by the Android mobile web browsers as of
December 2013, even though there is an HTML5 notification API in the draft stage [Gregg 2013].
However, there is a third-party JavaScript API called Pusher that simulates the notification feature
by overlaying an HTML <div> block on top of the webpage when a notification is received. De-
velopers can embed the Pusher API to send, receive, and display notifications in text form in real
time [Pusher 2012]. The Pusher API is closed-source and therefore we cannot show a code exam-
ple.

3.7 Access to Files

Access to files is fully supported by the HTML5 standard via the HTML5 File API drafted by
W3C [Ranganathan 2013].

Figure 6 shows a JavaScript code example that demonstrates the use of this API. It enables the
user to select a file and displays some of the file properties such as file size and last-modified
date.

Figure 6: JavaScript Code Example for Accessing Files 3

3 Reprinted from Bidelman [Bidelman 2010]. Code examples are subject to the Apache 2.0 License

(http://www.apache.org/licenses/LICENSE-2.0).

<!DOCTYPE HTML>
<html>
 <head>
 <title>File API Examples</title>
 </head>
 <h1>File API Example</h1>

 <div>
 Click on the button below to select a file to inspect
 </div>
 <input type="file" id="files" name="files[]" multiple />
 <output id="list"></output>
 <script>
 function handleFileSelect(evt) {
 var files = evt.target.files;
 // FileList object

 // files is a FileList of File objects. List some properties.
 var output = [];
 for (var i = 0, f; f = files[i]; i++) {
 output.push('', escape(f.name), ' (', f.type || 'n/a', ')
 - ', f.size, ' bytes, last modified: ', f.lastModifiedDate ?
 f.lastModifiedDate.toLocaleDateString() : 'n/a', '');
 }
 document.getElementById('list').innerHTML = '' + output.join('') + '';
 }
 document.getElementById('files').addEventListener('change', handleFileSelect, false);
 </script>
</html>

CMU/SEI-2014-TN-002 | 13

It is important to note that some mobile browsers, such as Google Chrome for Android, have re-
stricted HTML5 file access to certain directories, while other mobile browsers, such as Firefox for
Android and Dolphin, have access to more directories. For example, during test runs, Google
Chrome was able to access photos only from the pictures directory, while the Firefox for Android
and Dolphin web browsers were able to access files from more than just the pictures directory.

3.8 Accelerometer

The accelerometer feature is fully supported by the HTML5 standard device motion API drafted
by W3C [Block 2011]. The test mobile web browsers on the Android platform have adopted this
API.

Figure 7 shows the code example that demonstrates the use of this API. The code example access-
es the accelerometer of the mobile device and displays the acceleration or delta movements of the
mobile device in x, y, and z coordinates. The details of the operations can be found on the W3C
website [Block 2011].

Figure 7: HTML5 Code Example for Accelerometer

3.9 Orientation

Orientation is fully supported by the HTML5 standard via the device orientation API. This stand-
ard was drafted by W3C to support accessing the mobile device’s ability to determine its own ori-
entation: portrait or landscape. The test mobile web browsers on the Android platform have
adopted this API.

Figure 8 shows the code example that demonstrates the use of this API. It accesses the mobile
device’s orientation, which is represented by the variables alpha, beta, and gamma. The details of
the operations can be found on the W3C website [Block 2011].

<!DOCTYPE HTML>
<html>
 <head>
 <title>Accelerometer</title>
 </head>
 <body>
 <p>
 <h1 id="accelerometer"></h1>
 </p>
 <script>
 window.addEventListener("devicemotion", function(event) {
 // Process event.acceleration
 var keepDigits = 1000000;
 document.getElementById("accelerometer").innerHTML = "X: " +
 parseInt(event.acceleration["x"] * keepDigits) + "</br> Y: " +
 parseInt(event.acceleration["y"] * keepDigits) + "</br> Z: " +
 parseInt(event.acceleration["z"] * keepDigits);
 }, true);
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 14

Figure 8: HTML5 Code Example for Orientation

3.10 Microphone

The microphone feature is fully supported by the HTML5 standard via multiple APIs. The earlier
established HTML5 API that can access the microphone is the media capture API that overrides
the HTML input element to accept audio files captured straight from the microphone on mobile
devices [Kostiainen 2013a]. However, this implementation is sub-optimal because during the test
runs, using this API simply resulted in a file selector instead of accessing the mobile device’s mi-
crophone. This means that if the mobile device does not have a voice recorder application in-
stalled, there is no way to access the microphone. The newer HTML5 API that can access the mi-
crophone is WebRTC, which can directly access the microphone and receive the voice as
streaming data [Google 2011].

Figure 9 shows the code example that lets the user access the microphone and record audio to a
file using the media capture API. The code example works as follows: when the user taps on the
button, an application selector pops up asking the user to select an audio recorder app to record
the audio file. An example of voice capture using WebRTC can be found on the HTML5Rocks
website; the website provides a demo of a video chat client that resides inside a web browser with
no extra plugin installations required [Dutton 2012].

<!DOCTYPE HTML>
<html>
 <head>
 <title>Orientation</title>
 </head>
 <body>
 <p>
 <h1 id="orientation"></h1>
 </p>
 <script>
 window.addEventListener("deviceorientation", function(event) {
 // process event.alpha, event.beta and event.gamma
 document.getElementById("orientation").innerHTML = "Alpha: " +
 parseInt(event.alpha) + "</br> Beta: " + parseInt(event.beta) +
 "</br> Gamma: " + parseInt(event.gamma);
 }, true);
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 15

Figure 9: HTML5 Code Example for Microphone

3.11 Compass

The compass feature is also fully supported by the HTML5 standard as it uses the same API that
is used for accessing the orientation of the device. To access the compass features on mobile de-
vices, developers can employ the already available device orientation API [Block 2011], and in-
versing the alpha variable will provide the heading of the compass reading.

Figure 10 shows the code example that demonstrates the compass feature. It displays the compass
heading (North, South, East, or West) for the top of the device when held in portrait mode.

<!DOCTYPE HTML>
<html>
 <head>
 <title>Microphone</title>
 </head>
 <body>
 <p>
 Currently it doesn't work so well with Nexus 7 Chrome browser. It just launches a
 file selector, and audio recorder is not one of the options if you don't have it
 installed.
 </p>
 <form action="server.cgi" method="post" enctype="multipart/form-data">
 <input type="file" accept="audio/*;capture=microphone">
 </form>
 <form action="server.cgi" method="post" enctype="multipart/form-data">
 <input type="file" name="audio" accept="audio/*" capture>
 <input type="submit" value="Upload">
 </form>
 </body>
</html>

CMU/SEI-2014-TN-002 | 16

Figure 10: HTML5 Code Example for Compass

3.12 Ambient Light

The ambient light feature is not currently supported by the HTML5 standard because, as of De-
cember 2013, W3C has only begun to draft the Ambient Light Events API [Turner 2013], and
only some of the mobile web browsers have adopted it. For example, Firefox for Android sup-
ports the ambient light feature but Google Chrome and Dolphin do not.

Figure 11 shows the code example that demonstrates the ambient light feature. It reads the ambi-
ent light sensor’s data (in unit of lux on the Nexus 7) and displays it in the “Ambient Light”
HTML element. During the test runs, Firefox for Android was able to access and display the am-
bient light sensor’s data, but nothing was accessed or displayed on the Google Chrome and Dol-
phin web browsers.

<!DOCTYPE HTML>
<html>
 <head>
 <title>Compass</title>
 </head>
 <body>
 <p>
 <h1 id="compass"></h1>
 </br>
 Note: the device needs to be in portrait mode, and preferably lying on a flat surface.
 </p>
 <script>
 window.addEventListener("compassneedscalibration", function(event) {
 alert('Your compass needs calibrating! Wave your device in a figure-eight
 motion');
 event.preventDefault();
 }, true);

 window.addEventListener("deviceorientation", function(event) {
 // process event.alpha, event.beta and event.gamma
 document.getElementById("compass").innerHTML = "You are facing: " +
 headingToDirection(parseInt(event.alpha));
 }, true);

 //simply take 360 degrees and subtract the device orientation's alpha to get the
 // direction
 function headingToDirection(alpha) {
 var heading = 360 - parseInt(alpha);

 //approximate the heading
 if (heading > 337 || heading < 23)
 return "North";
 if (heading > 22 && heading < 68)
 return "North-East";
 if (heading > 67 && heading < 113)
 return "East";
 if (heading > 112 && heading < 158)
 return "South-East";
 if (heading > 157 && heading < 203)
 return "South";
 if (heading > 202 && heading < 248)
 return "South-West";
 if (heading > 247 && heading < 293)
 return "West";
 if (heading > 292 && heading < 338)
 return "North-West";
 }
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 17

Figure 11: HTML5 Code Example for Ambient Light

3.13 Proximity

The proximity feature is not currently supported by the HTML5 standard because W3C has only
began to draft the Proximity Events API as of October 2013 [Kostiainen 2013b], and only some of
the mobile web browsers have adopted it as of December 2013. For example, Firefox for Android
supports the proximity feature, but Google Chrome and Dolphin do not.

Figure 12 shows the code example that demonstrates the proximity feature. It shows a non-zero
value when a physical object is far from the mobile device and a zero value when a physical ob-
ject is close to the mobile device.

Figure 12: HTML5 Code Example for Proximity

3.14 Ambient Temperature

Ambient temperature is not currently supported by the HTML5 standard because the draft of the
Ambient Temperature Events API is only in the early stages as of October 2013 [Caceres 2013a].
The test mobile web browsers did not support it as of December 2013.

<!DOCTYPE HTML>
<html>
 <head>
 <title>Ambient Light</title>
 </head>
 <body>
 <p>
 <h1 id="Ambient Light">Your browser does not support this feature.</h1>
 </p>
 <script>
 deviceLightHandler = function(event) {
 document.getElementById("Ambient Light").innerHTML = "Ambient light value = " +
 event.value + " lux.";
 }

 window.addEventListener('devicelight', deviceLightHandler);

 </script>
 </body>
</html>

<!DOCTYPE HTML>
<html>
 <head>
 <title>Proximity</title>
 </head>
 <body>
 <p>
 <h1 id="Proximity">Your browser does not support this feature.</h1>
 </p>
 <script>
 // Event Handler
 deviceProximityHandler = function(event) {
 document.getElementById("Proximity").innerHTML = "min = " + event.min +
 "; max = " + event.max + "value = " + event.value;
 }
 // Assigning the Event Handler to a Listener
 window.addEventListener('deviceproximity', deviceProximityHandler);
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 18

Figure 13 shows the code example that demonstrates the ambient temperature feature. It is sup-
posed to show the ambient temperature of the device’s surrounding environment in units of Celsi-
us. However, nothing is accessed or displayed on the HTML page when executing the code ex-
ample on all the test mobile web browsers.

Figure 13: HTML5 Code Example for Ambient Temperature

3.15 Ambient Humidity

Ambient humidity is not currently supported by the HTML5 standard because the draft of the
Ambient Humidity Events API is only in the early stages as of December 2013 [Caceres 2013b].
The test mobile web browsers did not support it as of December 2013.

Figure 14 shows the code example that demonstrates the ambient humidity feature. It is supposed
to show the ambient humidity of the device’s surrounding environment in percentage of relative
humidity. However, nothing is accessed or displayed on the HTML page when executing the code
example on all the test mobile web browsers.

Figure 14: HTML5 Code Example for Ambient Humidity

<!DOCTYPE HTML>
<html>
 <head>
 <title>Temperature</title>
 </head>
 <body>
 <p>
 <h1 id="Temperature">Your browser does not support this feature.</h1>
 </p>
 <script>
 tempHandler = function(event) {
 document.getElementById("Temperature").innerHTML = "Temperature = " +
 event.value + " C";
 }

 window.addEventListener('ambienttemperature', tempHandler);
 navigator.system.watch("AmbientTemperature", tempHandler);
 </script>
 </body>
</html>

<!DOCTYPE HTML>
<html>
 <head>
 <title>Humidity</title>
 </head>
 <body>
 <p>
 <h1 id="Humidity">Your browser does not support this feature.</h1>
 </p>
 <script>
 humidityHandler = function(event) {
 document.getElementById("Humidity").innerHTML = "Humidity = " + event.value +
 " %";
 }

 window.addEventListener('ambienthumidity', humidityHandler);
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 19

3.16 Atmospheric Pressure

Atmospheric pressure is not currently supported by the HTML5 standard because the draft of the
Atmospheric Pressure Events API is only in the early stages as of December 2013 [Tran 2013].
The test mobile web browsers did not support it as of December 2013.

Figure 15 shows the code example that demonstrates the ambient pressure feature. It is supposed
to show the atmospheric pressure of the device’s surrounding environment. However, nothing is
accessed or displayed on the HTML page when executing the code example on all the test mobile
web browsers.

Figure 15: HTML5 Code Example for Atmospheric Pressure

3.17 Battery Status

Battery status is not currently supported by the test mobile web browsers on the Android platform
as of December 2013, even though W3C has a candidate recommendation for the battery status
API as of the year 2012 [Kostiainen 2012].

The code example shown in Figure 16 is supposed to show the battery charge state, battery level,
and discharge time, but all values show up as unknown when executed in the Google Chrome and
Dolphin web browsers. On Firefox for Android, the battery level and discharging time do appear,
but only where there is change in the battery level; however, the charging state still appears as
unknown.

<!DOCTYPE HTML>
<html>
 <head>
 <title>Pressure</title>
 </head>
 <body>
 <p>
 <h1 id="Pressure">Your browser does not support this feature.</h1>
 </p>
 <script>
 pressureHandler = function(event) {
 document.getElementById("Pressure").innerHTML = "Pressure = " + event.value + "
kP";
 }

 window.addEventListener('AtmPressure', pressureHandler);
 navigator.system.watch("AmbientAtmosphericPressure", pressureHandler);
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 20

Figure 16: HTML5 Code Example for Battery Status

3.18 Audio Playback

Audio playback is fully supported by the HTML5 standard. Developers can simply use the “au-
dio” and “source” HTML elements to indicate source location of the audio file and the type of
audio file to play. The mobile web browser will render an audio player when the web page opens.

Figure 17 shows the code example that demonstrates the audio playback feature. The test web
browsers will render the audio element with an audio player that can control the playback of the
audio file.

Figure 17: HTML5 Code Example for Audio Playback

<!DOCTYPE html>
<html>
 <head>
 <title>Battery Status API Example</title>
 <script>
 var battery = navigator.battery;

 battery.onchargingchange = function() {
 document.querySelector('#charging').textContent = battery.charging ?
 'charging' : 'not charging';
 };

 battery.onlevelchange = function() {
 document.querySelector('#level').textContent = battery.level;
 };

 battery.ondischargingtimechange = function() {
 document.querySelector('#dischargingTime').textContent =
 battery.dischargingTime / 60;
 };

 </script>
 </head>
 <body>
 <div id="charging">
 (charging state unknown)
 </div>
 <div id="level">
 (battery level unknown)
 </div>
 <div id="dischargingTime">
 (discharging time unknown)
 </div>
 </body>
</html>

<!DOCTYPE html>
<html>
 <body>
 <audio controls>
 <source src="justin_bieber_beauty_and_a_beat.mp3" type="audio/mpeg">
 Your browser does not support the audio element.
 </audio>
 </body>
</html>

CMU/SEI-2014-TN-002 | 21

3.19 Video Playback

Video playback is fully supported by the HTML5 standard. Developers can simply use the “vid-
eo” and “source” HTML elements to indicate the source location of the video file and the type of
video file to play. The mobile web browser will render a video player when the web page opens.

Figure 18 shows the code example that demonstrates the video playback feature. The test mobile
web browsers will render the video element with a video player that can control the playback of
the video file.

Figure 18: HTML5 Code Example for Video Playback

3.20 Camera

Accessing the camera is fully supported by the HTML5 standard via the media capture API
[Kostiainen 2013a] or WebRTC [Google 2011]. Using the media capture API, developers can use
the input HTML element and indicate the type of media to capture to access the camera. Using
WebRTC, developers can use the application to directly access the camera as streaming data.

Figure 19 shows the code example that demonstrates the camera feature. On the selected test mo-
bile web browsers, it displays a file selector that will prompt the user to select an app that can
view images, and one of the options will be the camera app. After the user has taken a picture, the
web page will display the result.

However, the problem with the media capture API is that if the mobile device does not have a
camera app installed, then using the media capture API will not allow the user to access the cam-
era.

An example of camera capture using WebRTC can be found on the HTML5Rocks website where
there is a demo of a video chat client that resides inside a web browser with no extra plugin instal-
lations required [Dutton 2012].

<!DOCTYPE html>
<html>
 <body>
 <video width="320" height="240" controls>
 <source src="Dubstep_Cat.mp4" type="video/mp4">
 Your browser does not support the video tag.
 </video>
 </body>
</html>

CMU/SEI-2014-TN-002 | 22

Figure 19: HTML5 Code Example for Using the Camera

3.21 Vibration

Vibration is not currently supported by the HTML5 standard, even though W3C has a candidate
recommendation for the Vibration API as of July 2013 [Kostiainen 2013c]. During tests, the
Google Chrome and Dolphin web browsers did not support this feature, but the Firefox for An-
droid browser did support this feature.

Figure 20 shows the code example that demonstrates the vibration feature. It shows a single but-
ton on a web page that will vibrate the mobile device for one second when the user taps the but-
ton.

Figure 20: HTML5 Code Example for Vibration

<!DOCTYPE HTML>
<html>
 <head>
 <title>Camera</title>
 </head>
 <body>
 <p>
 Take a picture:
 <input type="file" name="Camera" accept="image/*" capture>
 </p>
 <canvas></canvas>
 <script>
 var input = document.querySelector('input[type=file]');

 input.onchange = function() {
 var file = input.files[0];

 displayAsImage(file);
 };

 function displayAsImage(file) {
 var imgURL = URL.createObjectURL(file), img = document.createElement('img');

 img.onload = function() {
 URL.revokeObjectURL(imgURL);
 };

 img.src = imgURL;
 document.body.appendChild(img);
 }
 </script>
 </body>
</html>

<!DOCTYPE html>
<html>
 <body>
 <button type="button" onclick="vibrate()">
 Vibrate
 </button>
 </body>
 <script>
 function vibrate() {
 // vibrate for 1000 ms
 navigator.vibrate(1000);
 }
 </script>
</html>

CMU/SEI-2014-TN-002 | 23

4 Follow-Up Evaluation: Bridging Frameworks

In Section 4, we discussed HTML5 support for edge application development features and noted
that many of them were not currently supported by the HTML5 standard. As a workaround for
those development features, we have investigated the use of bridging frameworks to create hybrid
mobile applications. More specifically, we investigated the usage of PhoneGap to create a notifi-
cation application and a battery status application for the Android platform. These two features
were selected because they are not supported by the HTML5 standard, but they can be supported
by using PhoneGap. We also looked at SenchaTouch as an alternative bridging framework.

4.1 PhoneGap

PhoneGap is an open-source mobile application bridging framework, based on project Cordova,
that enables developers to use standard web technologies such as HTML5, CSS3, and JavaScript,
to develop hybrid mobile applications across multiple mobile platforms such as iOS and Android
[PhoneGap 2014a]. The hybrid mobile applications that are generated by PhoneGap appear as
native applications to the mobile platforms because PhoneGap creates a single Android Activity
application (i.e., wrapper application) that uses the Activity’s onCreate() method to load an
HTML5 web page containing all the application logic and presentation. Figure 21 shows the
wrapper application source code for the notification demo application for the Android platform.

Figure 21: PhoneGap Wrapper Application for the Notification Demo

The main benefit of this approach is that the hybrid applications can access the mobile platform’s
native APIs via the PhoneGap framework. However, developers must be aware that the hybrid
mobile applications are applications that appear native to the mobile platforms and must be in-
stalled onto the device like any other native mobile application. For example, the hybrid mobile
applications created via PhoneGap are compiled into .apk files for the Android platform.

The following sections explain the structure and details of the hybrid mobile applications created
using PhoneGap.

//NotificationDemo.java
package org.apache.cordova.notification;

import android.os.Bundle;
import org.apache.cordova.*;

public class NotificationDemo extends DroidGap
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 // Set by <content src="index.html" /> in config.xml
 super.loadUrl(Config.getStartUrl());
 //super.loadUrl("file:///android_asset/www/index.html")
 }
}

CMU/SEI-2014-TN-002 | 24

4.1.1 Notification Hybrid Mobile Application

Notification is an essential feature on mobile devices for notifying the user of important events.
Examples of notification methods are pop-up alerts, notification bar messages, sound alerts, and
vibration alerts. Unfortunately, as noted earlier, the HTML5 technology does not support this de-
velopment feature. PhoneGap has a Notifications API that enables the hybrid mobile application
to directly access the notification mechanisms that are available on the mobile platforms [Phone-
Gap 2014c].

As shown in Figure 21, the wrapper application for the notification hybrid mobile application
loads the core application logic and presentation from the HTML5 web page,
file:///android_asset/www/index.html that is shown in Figure 22. This HTML5 web page starts the
application with the PhoneGap framework and connects it to all the PhoneGap APIs. Next, three
buttons are created on the web page for showing a pop-up notification alert, playing a notification
beep sound, and vibrating the mobile device. The API calls that perform these actions—
navigator.notification.alert(), navigator.notification.beep(), and navigator.notification.vibrate()—
are specifically defined by the PhoneGap API and not the HTML5 standard. The full set of Phon-
eGap APIs is available on the PhoneGap Documentation website [PhoneGap 2014b].

CMU/SEI-2014-TN-002 | 25

Figure 22: Notification Application Logic and Presentation HTML5 Web Page

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width, height=device-height,
 target-densitydpi=device-dpi" />
 <link rel="stylesheet" type="text/css" href="css/index.css" />
 <title>Notification Demo</title>
 </head>
 <body>
 <div class="app">
 <h1>Apache Cordova</h1>
 <div id="deviceready" class="blink">
 <p class="event listening">
 Connecting to Device
 </p>
 <p class="event received">
 Device is Ready
 </p>
 <button type="button" onclick="showAlert(); return false;">
 Show Alert
 </button>

 <button type="button" onclick="playBeep(); return false;">
 Play Beep
 </button>

 <button type="button" onclick="vibrate(); return false;">
 Vibrate
 </button>
 </div>
 </div>
 <script type="text/javascript" src="cordova.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 <script type="text/javascript">
 app.initialize();

 // alert dialog dismissed
 function alertDismissed() {
 // do nothing for now }

 // Show a custom alert
 function showAlert() {
 navigator.notification.alert(
 'You are the champion!', // message
 alertDismissed, // callback
 'Success', // title
 'Rejoice' // buttonName);
 }

 // Beep 1 time
 function playBeep() {
 navigator.notification.beep(1);}

 // Vibrate for 2 seconds
 function vibrate() {
 navigator.notification.vibrate(2000); }
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 26

4.1.2 Battery Status Hybrid Mobile Application

Battery status is an important development feature that can enable applications to tailor the appli-
cation’s level of processing and resource usage based on the remaining battery life of a user’s ses-
sion. HTML5 alone cannot access this information, but there is a PhoneGap API that provides
battery status information [PhoneGap 2014d].

Figure 23 shows the core application logic and presentation code for the battery status hybrid mo-
bile application. It attaches the battery listener upon app initialization, and when it receives the
battery information event, it posts a message indicating remaining battery percentage and whether
the device is plugged into a power source.

CMU/SEI-2014-TN-002 | 27

Figure 23: Battery Status Application Logic and Presentation HTML5 Web Page

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width, height=device-height,
 target-densitydpi=device-dpi" />
 <link rel="stylesheet" type="text/css" href="css/index.css" />
 <title>Hello World</title>
 </head>
 <body>
 <div class="app">
 <h1>Apache Cordova</h1>
 <div id="deviceready" class="blink">
 <p class="event listening">
 Connecting to Device
 </p>
 <p class="event received">
 Device is Ready
 </p>
 </div>
 </div>

 <h1 id='BatteryInfo'>Battery information has not been retrieved yet.</h1>
 <script type="text/javascript" src="cordova.js"></script>
 <script type="text/javascript">
 var app = {
 // Application Constructor
 initialize : function() {
 this.bindEvents();
 },
 // Bind Event Listeners
 // Bind any events that are required on startup. Common events are:
 // 'load', 'deviceready', 'offline', and 'online'.
 bindEvents : function() {
 document.addEventListener('deviceready', this.onDeviceReady, false);
 },
 // deviceready Event Handler
 // The scope of 'this' is the event. In order to call the 'receivedEvent'
 // function, we must explicitly call 'app.receivedEvent(...);'
 onDeviceReady : function() {
 app.receivedEvent('deviceready');
 //attach the battery listener here
 window.addEventListener("batterystatus", onBatteryStatus, false);
 },
 // Update DOM on a Received Event
 receivedEvent : function(id) {
 var parentElement = document.getElementById(id);
 var listeningElement = parentElement.querySelector('.listening');
 var receivedElement = parentElement.querySelector('.received');
 listeningElement.setAttribute('style', 'display:none;');
 receivedElement.setAttribute('style', 'display:block;');
 console.log('Received Event: ' + id);
 }
 };
 function onBatteryStatus(info) {
 // Handle the online event
 document.getElementById('BatteryInfo').innerHTML = "Is battery plugged? " +
 info.isPlugged + ". The battery Level is: " + info.level + "%";
 }
 app.initialize();
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 28

4.2 SenchaTouch

SenchaTouch is another bridging framework that uses web technologies to develop cross-platform
hybrid mobile applications. The main focus of SenchaTouch is the user interface (UI) of hybrid
mobile applications, which is why it provides an extensive set of UI elements for developers. Ap-
plications implemented using SenchaTouch still have the portability aspect because they can run
on multiple mobile platforms [Sencha 2013a].

The SenchaTouch SDK includes many examples that demonstrate capabilities, and they all use
current HTML5 web technologies. The basic development process is to implement the hybrid
mobile applications using SenchaTouch APIs and then upload them to a web server. The user can
access those apps by visiting the website/server [Pearce 2011].

Though applications written using SenchaTouch can exist as mobile web applications, they cannot
access the device-level APIs more than the HTML5 technology alone can. In order to access the
device-level APIs, such as the notification API, the developer still must integrate PhoneGap with
SenchaTouch and package the applications into native mobile applications using PhoneGap [Sen-
cha 2013b].

CMU/SEI-2014-TN-002 | 29

5 Software Architecture Implications

Aside from the functional requirements for edge applications, there are software quality attributes
to consider, such as the maintainability, performance, and portability of the applications. The
main focus of this section is to examine the effect that the use of HTML5 and bridging frame-
works has on these quality attributes.

5.1 Maintainability

Maintainability is defined as “the degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers” [Bass 2013]. We are specifically interested
in the ease of updating the applications as technologies evolve. The questions to answer are the
following:

 Will the evolution of HTML5 affect currently implemented HTML5 mobile applications?

 Will the evolution of Android OS4 affect currently implemented HTML5 mobile applica-
tions?

 Will the evolution of the bridging frameworks affect currently implemented hybrid mobile
applications?

 Can hybrid mobile applications be migrated to HTML5 mobile applications as new develop-
ment features are added to the HTML5 standard?

If the answer to any of the above question is “yes,” then the follow up question is “What percent-
age of code must be updated and how much development time will it consume?”

The following subsections will explore the answers to these questions in detail.

5.1.1 Evolution of HTML5 and Its Effects on HTML5 Applications

The evolution of HTML5 involves adding new APIs to the specification and enabling more de-
velopment features. As listed in Table 2 of Section 4, there are many development features that
are not currently supported by the HTML5 standard but are in the process of being formalized.

In looking at the changes to the HTML5 specification over the years, we notice that once an API
has been formally approved, there are no further changes to the API. For example, the Geoloca-
tion API has not changed from the year 2008 draft [Propescu 2008] to the current approved speci-
fication dated 2013 [Propescu 2012]. The same navigator.geolocation.watch Position() JavaScript
function is used to track the location of the mobile device. If this practice continues, then the evo-
lution of HTML5 will not affect any existing mobile applications implemented using the HTML5
standard.

5.1.2 Evolution of Android OS and Its Effects on HTML5 Applications

To understand the effects of Android OS evolution on HTML5 applications, we looked at the ver-
sion histories of Android OS. Table 3 shows the only two entries that relate to HTML5 support
and their corresponding release dates. HTML5 support was first provided in Android 2.0 Éclair,

4 The question is limited to Android OS because that was the platform that was selected for the experiments. How-

ever, the same question would apply to any other mobile platform.

CMU/SEI-2014-TN-002 | 30

which was released on October 26, 2009. The next entry is from Android 2.2 Froyo, which added
the HTML5 Files API support but did not change any of the existing HTML5 support.

Table 3: Android OS Version History Related to HTML5 Support [Wikipedia 2013a]

Date Version Number Change Log Details

26 Oct. 2009 Android 2.0 Éclair refreshed browser UI with bookmark thumbnails, double-
tap zoom and support for HTML5 (Initial support for
HTML5 on Android)

20 May 2010 Android 2.2 Froyo support for file upload fields in the Browser application
(Files API support)

Because HTML5 support is more likely to be built into the web browsers, we examined the ver-
sion histories of two mobile web browsers on the Android platform: Google Chrome and Firefox
for Android. Table 4 shows all the versions of Google Chrome that relate to HTML5 support and
their corresponding release dates. As with the Android OS version history, we noticed that in all
the versions of Google Chrome, only new HTML5 features were added and no changes were
made towards existing HTML5 support.

Table 4: Android Google Chrome Version History Related to HTML5 Support [Wikipedia 2013b]

Date Version Number Change Log Details

12 Oct. 2009 3.0.195 HTML5 video and audio tag support

25 Jan. 2010 4.0.249 improved HTML5 support

21 May 2010 5.0.375 increased HTML5 support (Geolocation API, App Cache,
web sockets, and file drag-and-drop)

21 Oct. 2010 7.9.517 implemented HTML5 parsing algorithm, File API

27 Apr. 2011 11.0.696 HTML5 Speech Input API

31 Jul. 2012 21.0.1180 HTML5 audio/video and WebAudio now support 24-bit
PCM wave files

10 Jan. 2013 24.0.1312 The HTML5 datalist element now supports suggesting a
date and time.

2 Oct. 2013 30.0.1599 DeviceMotion (device acceleration and rotation rates)
events and two new experimental features behind a flag:
Web Speech API (recognition) and the Vibration API

Table 5 shows all the versions of Firefox for Android that relate to HTML5 support and their cor-
responding release dates. Similar to the Android OS version history as well as the Google Chrome
version history, we noticed that in all the versions of Firefox for Android, only new HTML5 fea-
tures were added and no changes were made towards existing HTML5 support.

CMU/SEI-2014-TN-002 | 31

Table 5: Firefox for Android Version History Related to HTML5 Support [Wikipedia 2013c]

Date Version Number Change Log Details

29 Mar. 2011 4 HTML5 support in Firefox for Android and Maemo in-
cludes Location-Aware Browsing, device orientation, ac-
celerometer, desktop notifications and more

16 Aug. 2011 6 single touch events API, and IndexedDB API for local
database storage

27 Sep. 2011 7 The WebSocket API is now available in Firefox for An-
droid.

21 Dec. 2011 9 HTML5 Input Tag for Camera Access, and HTML5 Form
Validation

31 Jan. 2012 10 HTML5 new <bdi> element for bi-directional text isola-
tion, along with supporting CSS properties

16 Feb. 2012 11 HTML5 The outerHTML property is now supported on
HTML elements.

28 Aug. 2012 15 HTML5 The <audio> and <video> elements now support
the played attribute, and the <source> element now sup-
ports the media attribute.

2 Apr. 2013 20 HTML5 <canvas> now supports blend modes, and Vari-
ous <audio> and <video> improvements.

25 Jun. 2013 22 new HTML5 <data> and <time> elements

From the examination of the version histories of Android OS, Google Chrome web browser, and
Firefox for Android web browser, and observing that no changes were implemented on any exist-
ing HTML5 feature support, we concluded that if these practices continue, the evolution of An-
droid OS will not affect any existing mobile application implemented using the HTML5 standard.
However, this conclusion is simply based on historical data and does not preclude future changes
in practices.

5.1.3 Evolution of Bridging Frameworks and Its Effects on Hybrid Mobile
Applications

To understand the evolution of bridging frameworks and its effect on hybrid mobile applications,
we examined the version history of PhoneGap, looking for any major differences in its APIs.
PhoneGap was selected simply because of its larger web presence, its open source, and its easily
available documentation.

From the oldest version of PhoneGap (version 0.9.2)[PhoneGap 2014e] up to the newest version
of PhoneGap (version 3.1.0) [PhoneGap 2014b], new APIs were added in each subsequent re-
lease, and there was only one API that was changed during this time frame: The Network API
from version 0.9.5.1 [PhoneGap 2014f] was changed to the Connection API in version 0.9.6
[PhoneGap 2014g]. This API is mainly used to retrieve the information of the connectivity meth-

CMU/SEI-2014-TN-002 | 32

ods available on the mobile device—for example, to determine whether the device has cellular or
Wi-Fi connectivity [PhoneGap 2014h].

From examining the version history of PhoneGap, we concluded that the evolution of bridging
frameworks will not affect any existing hybrid mobile applications developed using PhoneGap,
unless the applications used the Network API from version 0.9.5.1 or lower and wanted to switch
to using PhoneGap version 0.9.6 or higher.

5.1.4 Migrating Hybrid Mobile Applications to HTML5 Applications

To understand the difficulty of transitioning a hybrid mobile application to an HTML5 applica-
tion, we selected the accelerometer feature because it could be developed using either PhoneGap
or HTML5.

Figure 24 shows the core application logic and presentation code for the accelerometer hybrid
mobile application. There is a single button on the HTML page, and when it is pressed, it displays
the accelerometer data exactly as in the accelerometer HTML5 mobile application shown in Sec-
tion 4.8, Figure 7. This code example will work if it is built and deployed with PhoneGap, but will
not run properly and will show errors if it is opened in any web browser. This result is expected
because the PhoneGap APIs and HTML5 APIs are very different. In addition, the web browser is
not able to detect the PhoneGap APIs without building the code through PhoneGap because the
app cannot connect to the PhoneGap framework during the app initialization stage (the first line of
the embedded JavaScript: app.initialize()).

CMU/SEI-2014-TN-002 | 33

Figure 24: Accelerometer Application Logic and Presentation HTML5 Web Page

<html>
 <head>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width, height=device-height,
 target-densitydpi=device-dpi" />
 <link rel="stylesheet" type="text/css" href="css/index.css" />
 <title>Acceleration</title>
 </head>
 <body>
 <div class="app">
 <h1>Apache Cordova</h1>
 <div id="deviceready" class="blink">
 <p class="event listening">
 Connecting to Device
 </p>
 <p class="event received">
 Device is Ready
 </p>
 </div>
 </div>

 <button type="button" onclick="toggleAccel();">
 Toggle Accelerometer
 </button>

 <h1>Current acceleration in x-coordinate: </h1>
 <h1 id='x'></h1>

 <h1>Current acceleration in y-coordinate: </h1>
 <h1 id='y'></h1>

 <h1>Current acceleration in z-coordinate: </h1>
 <h1 id='z'></h1>
 <script type="text/javascript" src="cordova.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 <script type="text/javascript" src="main.js"></script>
 <script type="text/javascript">
 app.initialize();
 var accelerationWatch = null;
 function updateAcceleration(a) {
 document.getElementById('x').innerHTML = roundNumber(a.x);
 document.getElementById('y').innerHTML = roundNumber(a.y);
 document.getElementById('z').innerHTML = roundNumber(a.z);
 }
 var toggleAccel = function() {
 if (accelerationWatch !== null) {
 navigator.accelerometer.clearWatch(accelerationWatch);
 updateAcceleration({
 x : "", y : "", z : ""
 });
 accelerationWatch = null;
 } else {
 var options = {};
 options.frequency = 1000;
 accelerationWatch =
 navigator.accelerometer.watchAcceleration(updateAcceleration,
 function(ex) {
 alert("accel fail (" + ex.name + ": " + ex.message + ")");
 }, options);
 }
 };
 </script>
 </body>
</html>

CMU/SEI-2014-TN-002 | 34

However, the migration from a hybrid mobile application to a pure HTML5 mobile application is
still possible. The developer would have to manually remove all the JavaScript code related to
PhoneGap, and replace it with the corresponding HTML5 JavaScript code. Although up to 100%
of the JavaScript source code of a hybrid mobile app created using PhoneGap must be replaced,
the original HTML web page layout and the CSS files that define the look and feel of the web
page can be preserved.

In summary, to migrate hybrid mobile applications to HTML5 mobile applications, the applica-
tion logic must be modified, but the presentation of the mobile application can be preserved. Hav-
ing a coding standard that localizes JavaScript code in specific areas of the HTML5 file or places
it in external files can facilitate the process.

5.2 Performance

Performance is about “time and a software system’s ability to meet timing requirements” [Bass
2013]. We are specifically interested in two aspects related to performance: application execution
time and memory usage. Though there are many articles that indicate that native applications have
better performance than HTML5 applications [Regmi 2011], we still conducted a simple perfor-
mance test to validate this statement: We measured the application execution time (one run) and
memory usage of a native mobile application and an HTML5 mobile application that use the Geo-
location feature.

5.2.1 Execution Time Analysis

To compare the execution time of a native mobile application against an HTML5 mobile applica-
tion using the Geolocation feature, timestamp code was added at the beginning of the mobile ap-
plication and then subtracted from the timestamp after the location of the mobile device was re-
trieved. The measured execution time does not include the HTML page fetching and rendering, as
it only measures the time between when the Geolocation API is called and when a location is re-
ceived. In addition, because the execution time may fluctuate due to the mobile device back-
ground processes or other operating system factors, three test runs were performed for each mo-
bile application and their average time was retrieved for comparison. Also, network location is
used over GPS location for more consistent timings. Our test runs were performed on the Sam-
sung Galaxy S4, and Table 6 lists the results of the test runs for a native mobile application and an
HTML5 mobile application that solely use the Geolocation feature upon application startup.

Table 6: Execution Times for a Native and an HTML5 Mobile Geolocation Application

Test Run Native Mobile Application Execution
Time (milliseconds)

HTML5 Mobile Application Execu-
tion Time (milliseconds)

#1 59 192

#2 64 282

#3 67 167

Average 63 214

Our test runs show that accessing the Geolocation feature on a native mobile application is ap-
proximately three times faster than accessing the Geolocation feature on an HTML5 native mobile

CMU/SEI-2014-TN-002 | 35

application, which supports the claim that HTML5 mobile applications are slower in terms of ex-
ecution time when compared to native mobile applications. This is expected, given that HTML5
applications run within a web browser.

5.2.2 Memory Usage Analysis

To understand the memory usage of native mobile applications and HTML5 applications, we used
a free memory usage analysis tool on the Android mobile device called Memory Usage5 to display
the memory usage of any running process. Measuring the memory usage of the native mobile ap-
plication is easy: we observe the memory usage of the running application. However, measuring
the memory usage of an HTML5 application is more complex because the HTML5 mobile appli-
cation runs inside a web browser. In our tests we first measured the memory usage of the mobile
web browser (Google Chrome and Firefox for Android) with no web pages open to obtain a
measurement baseline. We then measured the memory usage of the web browser running only the
HTML5 mobile application that uses the Geolocation feature. Finally we subtracted the first value
(only web browser) from the second value (browser plus mobile application) to obtain an approx-
imate measurement of the memory usage for just the HTML mobile application. Table 7 shows all
these values.

Table 7: Memory Usage for a Native and an HTML5 Mobile Geolocation Application

Software
Component

Memory
Usage
(MB)

(1) Native Mobile Application 4.4

(2) Google Chrome (no web pages open) 11.16

(3) HTML5 Mobile Application Running in Google Chrome (Total)6 24.16

(4) HTML5 Mobile Application Running in Google Chrome (Only app: (3) – (2)) 13.0

(5) Firefox for Android (no web pages open) 11.1

(6) HTML5 Mobile Application Running in Firefox for Android (Total) 25.1

(7) HTML5 Mobile Application Running in Firefox for Android (Only app: (6) – (5)) 14.0

5 https://play.google.com/store/apps/details?id=mem.usage

6 The memory usage values for Google Chrome are the result of adding the memory usage values of the two running
processes associated to Google Chrome

CMU/SEI-2014-TN-002 | 36

Our analysis shows that the memory usage of a native mobile application is approximately three
times smaller than an HTML5 mobile application that uses the Geolocation feature, which sup-
ports the claim that HTML5 mobile applications are less memory efficient when compared with
native mobile applications. It is interesting to note that the memory usage of the HTML5 mobile
application does not vary greatly between the two mobile web browsers. However, given that we
used a very simple method to determine the amount of memory consumed by the HTML5 mobile
application, the results are likely not precise.

5.3 Portability of HTML5 Among Mobile Web Browsers

Portability refers to “the ease with which software that was built to run on one platform can be
changed to run on a different platform” [Bass 2013]. Portability is one of the drivers of HTML5
that enable applications to be developed once and then to run on multiple mobile platforms. How-
ever, in our studies, we were interested in examining the portability of HTML5 applications
across the selected test mobile web browsers.

During the investigation and implementation of HTML5 mobile applications, we noticed that dif-
ferent web browsers support HTML5 development features differently. Table 8 lists the edge ap-
plication development features and their support from the selected test mobile web browsers. The
HTML5 feature support is listed either as “fully supported” if the HTML5 code example for that
particular feature works flawlessly or “not supported” if the HTML5 code example for that par-
ticular feature did not work as of December 2013.

Table 8: HTML5 Features Support for Android Web Browsers

Edge Application
Development Feature

Google Chrome
for Android

Firefox for
Android

Dolphin for
Android

geolocation fully supported fully supported fully supported

Wi-Fi communication –
client-server

fully supported fully supported not supported

Wi-Fi communication – peer-
to-peer

fully supported fully supported not supported

Bluetooth communication not supported not supported not supported

background processing fully supported fully supported not supported

interactive UI (such as touch
interface and gestures)

fully supported fully supported not supported

user notification not supported not supported not supported

access to files fully supported fully supported fully supported

accelerometer fully supported fully supported not supported

orientation fully supported fully supported fully supported

microphone fully supported fully supported not supported

compass fully supported fully supported fully supported

ambient light not supported fully supported not supported

CMU/SEI-2014-TN-002 | 37

proximity not supported fully supported not supported

ambient temperature not supported not supported not supported

ambient humidity not supported not supported not supported

atmospheric pressure not supported not supported not supported

battery status not supported fully supported not supported

audio playback fully supported fully supported fully supported

video playback fully supported fully supported fully supported

camera fully supported fully supported fully supported

vibration not supported fully supported not supported

From testing the HTML5 features on multiple test mobile web browsers, we are able to conclude
that the support of HTML5 features across mobile web browsers is not consistent; this means that
the choice of web browser is very important when running edge applications.

CMU/SEI-2014-TN-002 | 38

6 Related Work

Researchers have conducted many studies on the usefulness of HTML5 technology with in-depth
analysis of many of its features. In one such study, Melamed and Clayton evaluated HTML5 fea-
tures such as offline storage, geolocation, interactive user interface, and local persistence of data
for designing and implementing pervasive media applications [Melamed 2010]. They found that
HTML5 combined with geolocation could provide most of the features required by pervasive me-
dia mobile apps. However, they did not analyze all the features that can be leveraged by edge ap-
plications. Torunski evaluated the use of HTML5 in a cloud-based system targeted at emergency
response planning in which HTML5 was used to build client software that retrieved and used in-
formation from cloud servers [Torunski 2012]. The study showed that HTML5 simplified the de-
velopment of cloud-based systems. However, the study did not target the usage of HTML5 for
mobile applications, but rather focused on desktop applications and rich graphical user interface
features.

Many research studies have focused on using HTML5 on mobile devices to solve a specific prob-
lem. Zhu and colleagues focused on using HTML5 to build a framework for mobile web applica-
tion development that improves reusability of source code and eases the reconstruction and inte-
gration of mobile applications [Zhu 2013]. Regmi and colleagues analyzed the performance of
web applications implemented using HTML5, with a specific focus on network dependency, user
experience, and performance of mobile devices [Regmi 2011]. Jeremić and colleagues list a broad
set of HTML5 features for mobile devices and describe, step-by-step, how to use these features to
build a mobile web application [Jeremic 2013]. Hu and colleagues specifically researched loca-
tion-based services, using the HTML5 Geolocation feature and Google Maps application pro-
gramming interfaces (APIs) [Hu 2013]. In addition to research papers, there are also many books
that discuss and teach mobile HTML5 application development [Kyrnin 2012, Kessin 2012,
Holdnener 2011, Oehlman 2011]. Although these studies focus on the use of HTML5 features in
mobile application, they do not completely address the features required by sensor-rich and dy-
namic edge applications.

Finally, there is research conducted on the comparison of native and hybrid mobile application
development approaches. Hybrid mobile application development approaches combine native
mobile development features with HTML5 and other web application development features. Zibu-
la and Majchrzak analyzed cross-platform development using HTML5, jQuery Mobile, and Phon-
eGap [Zibula 2012]. Ristimäki discusses the use of the Android software development kit (SDK)
for implementing a mobile application to control sensors and actuators [Ristimaki 2013]. Ghatol
and Patel describe and teach hybrid mobile application development using PhoneGap, which is a
mobile web framework that provides the feature set of native mobile development to mobile web
application development [Ghatol 2011]. Although these research documents provide a broad
overview of using bridging frameworks to develop mobile applications in a hybrid manner, com-
bining the use of native mobile SDKs and HTML5, they do not specifically address how hybrid
mobile development approaches can benefit edge applications.

CMU/SEI-2014-TN-002 | 39

7 Summary and Conclusions

We analyzed a total of 22 edge application development features via the construction of code ex-
amples for each of the development features. Thirteen of those features are supported by HTML5,
eight have high possibility of being supported in the future, and one feature is not supported by
HTML5.

As for the missing development features required by edge applications, we analyzed whether
bridging frameworks such as PhoneGap or SenchaTouch could fulfill the requirements. Though
the bridging frameworks do provide more native device-level API access, the resulting applica-
tions appear native to the mobile platforms, which means that they must be installed on the mobile
device.

Finally, we examined the software architecture implications of HTML5 mobile applications and
discovered that the maintainability of HTML5 mobile applications looks promising as the evolu-
tion of the HTML5 standard and Android OS has not modified any released APIs. When we com-
pared the performance of HTML5 mobile applications to native applications on the Android plat-
form, we discovered that indeed the HTML5 mobile applications are 3.4 times slower and use 3
times more memory. In addition, from running our HTML5 code examples, we discovered that
portability of HTML5 mobile applications across mobile web browsers varies: Firefox for An-
droid supports 16 HTML5 edge application development features, Android Google Chrome sup-
ports 13 features, and Dolphin supports 7 HTML5 edge application development features.

Overall, the HTML5 web standard as of today still lacks support for many of the critical edge de-
velopment features. Bridging frameworks can fill the missing development features, but unfortu-
nately, applications become compiled into native mobile applications. However, there has been
huge progress since this research started and adoption of HTML5 is growing. There are entire
operating systems currently being developed in HTML5, such as Firefox OS.7 Although HTML5
might not be currently ready for the development of edge applications because many required fea-
tures are still not fully suppported, it will likely only be a matter of time before it is possible.

7 http://www.mozilla.org/en-US/firefox/os/

CMU/SEI-2014-TN-002 | 40

CMU/SEI-2014-TN-002 | 41

Bibliography

URLs are valid as of the publication date of this document.

[Bass 2013]
Bass, Len, Clements, Paul & Kazman, Rick. Software Architecture in Practice – 3rd ed. Addison-
Wesley SEI Series in Software Engineering. Boston, MA, USA. 2013.

[Bidelman 2010]
Bidelman, Eric. “Reading Files in JavaScript Using the File APIs.” HTML5 Rocks. 18 June, 2010.
http://www.html5rocks.com/en/tutorials/file/dndfiles/

[Block 2011]
Block, Steve & Popescu, Andrei. “DeviceOrientation Event Specification.” World Wide Web
Consortium (W3C). 2011. http://dev.w3.org/geo/api/spec-source-orientation.html

[Caceres 2013a]
Cáceres, Marcos & Nv, Balaji. “Ambient Temperature Events.” World Wide Web Consortium
(W3C). 2013. https://dvcs.w3.org/hg/dap/raw-file/default/temperature/Overview.html

[Caceres 2013b]
Cáceres, Marcos & Nv, Balaji. “Ambient Humidity Events.” World Wide Web Consortium
(W3C). 2013. https://dvcs.w3.org/hg/dap/raw-file/default/humidity/Overview.html

[Chromium 2013]
The Chromium Blog. “Chrome 29 Beta: Web Audio and WebRTC in Chrome for Android.” 2013.
http://blog.chromium.org/2013/07/chrome-29-beta-web-audio-and-webrtc-in.html

[Dutton 2012]
Dutton, Sam. “Getting Started with WebRTC.” HTML5 Rocks. 23 July 2012.
http://www.html5rocks.com/en/tutorials/webrtc/basics/

[Ghatol 2011]
Ghatol, Rohit & Patel, Yogesh. Beginning PhoneGap: Mobile Web Framework for JavaScript
and HTML5. Apress, 2011.
http://books.google.com/books?hl=en&lr=&id=GTXQWFtx34sC&oi=fnd&pg=PA1&dq=html5+
android+application+sensors+%22html5%22+-presentation+-
brochure&ots=t0E5ej60CA&sig=JdXgbOZZ9A56XlEEqNT5KsKyz-4#v=onepage&q&f=false

[Google 2011]
Google Inc. WebRTC. 2011-2013. http://www.webrtc.org/

[Gregg 2013]
Gregg, John & van Kesteren, Anne “Web Notifications.” World Wide Web Consortium (W3C).
2013. http://www.w3.org/TR/2013/WD-notifications-20130912/

CMU/SEI-2014-TN-002 | 42

[Hickson 2011]
Hickson, Ian. “The WebSocket API.” World Wide Web Consortium (W3C), 2011.
http://www.w3.org/TR/2011/WD-websockets-20110929/

[Hickson 2012]
Hickson, Ian. “Web Workers,” World Wide Web Consortium (W3C). 2012.
http://www.w3.org/TR/workers/

[Holdnener 2011]
Holdnener III, Anthony T. HTML5 Geolocation by O’Reilly. O’Reilly Media, Inc., 2011.
http://books.google.com/books?hl=en&lr=&id=9aIA5P6dp2cC&oi=fnd&pg=PR7&dq=html5+an
droid+application+sensors+%22html5%22+-presentation+-
brochure&ots=PgMnv8T06T&sig=uRUqggA8uClWlfwJn_G8ci8PKn8#v=onepage&q
=html5%20android%20application%20sensors%20%22html5%22%20-presentation%20-
brochure&f=false

[Hu 2013]
Hu, Wen-Chen, Kaabouch, Naima, Yang, Hung-Jen & Wang, Xiwei. “Location Based Services
Using HTML5 Geolocation and Google Maps APIs.”
http://micsymposium.org/mics_2013_Proceedings/submissions/mics20130_submission_1.pdf

[Jeremic 2013]
Jeremić, Miljan, Damjanović, Zvonko, Kostadinović, Đorđe & Jeremić, Dušan. “Build a Mobile
App with HTML5 and JavaScript.” Economics Management Information Technology 1, 4, 2013.
http://emit.kcbor.net/Kompletni%20casopisi/EMIT%20Vol1%20No4.pdf#page=37

[Kessin 2012]
Kessin, Zachary. Programming HTML5 Applications, 1st ed. O’Reilly Media, Inc., 2012.
http://books.google.com/books?hl=en&lr=&id=h8_Dylj8AigC&oi=fnd&pg=PR3&dq=programm
ing+html5+application+oreilly&ots=KPu33kzEM6&sig=wp8J2kfNUFSEWhQdGyRinlDjxSY

[Kostiainen 2012]
Kostiainen, Anssi & Lamouri, Mounir. “Battery Status API.” World Wide Web Consortium
(W3C). 2012. http://www.w3.org/TR/battery-status/

[Kostiainen 2013a]
Kostiainen, Anssi, Oksanen, Ilkka & Hazaël-Massieux, Dominique. “HTML Media Capture.”
World Wide Web Consortium (W3C). 2013. http://www.w3.org/TR/html-media-capture/

[Kostiainen 2013b]
Kostiainen, Anssi & Tran, Dzung D. “Proximity Events.” World Wide Web Consortium (W3C).
2013. http://www.w3.org/TR/proximity/

[Kostiainen 2013c]
Kostiainen, Anssi. “Vibration API.” World Wide Web Consortium (W3C). 2013.
http://www.w3.org/TR/vibration/

CMU/SEI-2014-TN-002 | 43

[Kyrnin 2012]
Kyrnin, Jennifer. Sam’s Teach Yourself HTML5 Mobile Application Development. Pearson Edu-
cation, Inc., 2012.
http://books.google.com/books?id=Zz3LwyDCL5MC&printsec=frontcover&dq=android+html5+
develop-
ment&hl=en&sa=X&ei=i5_RUenMLsbA4APZ94HQCw&ved=0CE0Q6AEwAw#v=onepage&q
&f=true

[Melamed 2010]
Melamed, Tom & Clayton, Ben. “A Comparative Evaluation of HTML5 as a Pervasive Media
Platform.” Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering 35 (2010): 307-325.
http://link.springer.com/chapter/10.1007/978-3-642-12607-9_20#page-1

[Mozilla 2013a]
The Mozilla Blog. “Web RTC Now Available Aross Mobile and Desktop with new Firefox with
Android Compatibility.” September 17, 2013. https://blog.mozilla.org/blog/2013/09/17/webrtc-
now-available-across-mobile-and-desktop-with-new-firefox-for-android-compatibility

[Mozilla 2013b]
Mozilla Developer Network. Java Script. https://developer.mozilla.org/en-
US/docs/Web/JavaScript (2013).

[Oehlman 2011]
Oehlman, Damon & Blanc, Sebastien. Pro Android Web Apps: Develop for Android UsingHT
ML5, CSS3 & JavaScript. Apress, 2011.
http://books.google.com/books?id=n6arJlPuiA0C&pg=PT2&lpg=PA1&ots=TG69Pn6ovr&dq=ht
ml5+android+application+development+html5&lr=

[Pearce 2011]
Pearce, James “Sencha Touch Quick Start.” Sencha Inc., December 15, 2011.
http://www.sencha.com/learn/sencha-touch-quick-start/

[PhoneGap 2014a]
PhoneGap Documentation. Overview.
http://docs.phonegap.com/en/3.0.0/guide_overview_index.md.html#Overview (2014).

[PhoneGap 2014b]
PhoneGap Documentation v3.1.0. Home. http://docs.phonegap.com/en/3.1.0/index.html (2014).

[PhoneGap 2014c]
PhoneGap Documentation. Notification.
http://docs.phonegap.com/en/3.1.0/cordova_notification_notification.md.html#Notification
(2014).

[PhoneGap 2014d]
PhoneGap Documentation. Events.
http://docs.phonegap.com/en/3.1.0/cordova_events_events.md.html#Notification (2014).

CMU/SEI-2014-TN-002 | 44

[PhoneGap 2014e]
PhoneGap Documentation v0.9.2 Home. http://docs.phonegap.com/en/0.9.2/index.html (2014).

[PhoneGap 2014f]
PhoneGap Documentation v0.9.5.1 Home. http://docs.phonegap.com/en/0.9.5.1/index.html
(2014).

PhoneGap 2014g]
PhoneGap Documentation v0.9.6 Home. http://docs.phonegap.com/en/0.9.6/index.html (2014).

[PhoneGap 2014h]
PhoneGap Documentation Connection.
http://docs.phonegap.com/en/3.1.0/cordova_connection_connection.md.html#Connection (2014).

[Propescu 2008]
Popescu, Andrei. “Geolocation API Specification.” World Wide Web Consortium (W3C). Decem-
ber 2008. http://www. w3.org/2008/TR/WD-geolocation-API-20081222

[Propescu 2012]
Popescu, Andrei. “Geolocation API Specification.” World Wide Web Consortium (W3C). May
2012. http://dev.w3.org/geo/api/spec-source.html

[Pusher 2012]
Pusher Ltd. Pusher. http://pusher.com (2012).

[Ranganathan 2013]
Ranganathan, Arun & Sicking, Jonas. “File API.” World Wide Web Consortium (W3C). 2013.
http://www.w3.org/TR/FileAPI/

[Regmi 2011]
Regni,Saroj Sharan & Adhikari, Suyog Man Singh. Network Performance of HTML5 Web Appli-
cation in Smartphone. Master’s Thesis. School of Computing, Blekinge Institute of Technology,
2011.
http://www.medieteknik.bth.se/fou/cuppsats.nsf/all/cd7caf2c8592833dc1257952007126bf/$file/B
TH2011Regmi.pdf

[Ristimaki 2013]
Ristimäki, Jarno. Android Interface to a Wireless Autonomous Wide Area Sensor Network. Mas-
ter’s Thesis. Helsinki Metropolia University of Applied Sciences, 2012.
http://theseus17-kk.lib.helsinki.fi/bitstream/handle/10024/42503/thesis_final_v2.pdf?sequence=1

[Schepers 2013]
Schepers, Doug, Moon, Sangwhan, Brubeck, Matt & Barstow, Arthur, eds. “Touch Events.”
World Wide Web Consortium (W3C). 2013. http://www.w3.org/TR/touch-events/

[Sencha 2013a]
Sencha Inc. “SenchaTouch Overview.” 2013. http://www.sencha.com/products/touch/

CMU/SEI-2014-TN-002 | 45

[Sencha 2013b]
Sencha Inc. “SenchaTouch Features.” 2013. http://www.sencha.com/products/touch/features

[Torunski 2012]
Torunski, Eric. Cloud-Based Collaborative Creation and Simulation of Courses of Action: Crea-
tion of a Prototype Web Application Using New HTML5 Features. CAE Inc., University of Otta-
wa, 2012.
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6291528&url=http%3A%2F%2Fieeexplor
e.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6291528

[Tran 2013]
Tran, Dzung D. “Atmospheric Pressure Events.” World Wide Web Consortium (W3C), 2013.
https://dvcs.w3.org/hg/dap/raw-file/default/pressure/Overview.html

[Turner 2013]
Turner, Doug & Kostiainen, Anssi. “Ambient Light Events.” World Wide Web Consortium
(W3C), 2013. http://www.w3.org/TR/ambient-light/

[Wikipedia 2013a]
Wikipedia. “Android Version History.” 2013.
http://en.wikipedia.org/wiki/Android_version_history

[Wikipedia 2013b]
Wikipedia. “Google Chrome for Android.” 2013.
http://en.wikipedia.org/wiki/Google_Chrome_for_Android#Release_history

[Wikipedia 2013c]
Wikipedia. “Firefox for Mobile.” 2013. http://en.wikipedia.org/wiki/Firefox_for_mobile#History

[W3C 2013]
World Wide Web Consortium. “Cascading Style Sheets Home Page.”
http://www.w3.org/Style/CSS/Overview.en.html (2013).

[W3C 2014]
World Wide Web Consortium. “HTML 5.1 Nightly: A Vocabulary and Associated APIs for
HTML and XHTML.” Editor's Draft, 21 January 2014.
http://www.w3.org/html/wg/drafts/html/master/

[Zhu 2013]
Zhu, XiaoMin, Chen, Donghua, Chen, Ying, & Chen, Huisheng. A Resource Integration Ap-
proach for HTML5 Mobile Applications. Springer Science+Business Media, 2013.
http://link.springer.com/article/10.1007/s10799-013-0158-9

[Zibula 2012]
Zibula, Alexander & Majchrzak, Tim A. Cross-Platform Development Using HTML5, jQuery
Mobile, and PhoneGap: Realizing a Smart Meter Application. Springer, 2012.
http://link.springer.com/content/pdf/10.1007%2F978-3-642-36608-6_2.pdf

CMU/SEI-2014-TN-002 | 46

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

July 2014

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Evaluation of the Applicability of HTML5 for Mobile Applications in Resource-Constrained Edge
Environments

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Bryan Yan, Grace A. Lewis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2014-TN-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Mobile applications increasingly are being used by first responders and soldiers to support their missions. These users operate in re-
source-constrained, edge environments characterized by dynamic context, limited computing resources, intermittent network connectivi-
ty, and high levels of stress. In addition to efficient battery management, mobile applications operating in edge environments require effi-
cient resource usage of onboard sensors to capture, store, and send data across networks that may be intermittent. The traditional
method for building mobile applications is to use native software development kits (SDKs) on a particular mobile platform, such as An-
droid or iOS. However, HTML5 has recently evolved to a stage where it supports many of the development features that native SDKs
support. The advantages of using HTML5 not only include cross-platform development and deployment, but also that mobile edge appli-
cations would not have to be deployed on mobile devices, potentially leading to an easier distribution and testing process. This technical
note presents an analysis of the feasibility of using HTML5 for developing mobile edge applications, as well as the use of bridging
frameworks for filling in gaps in HTML5 development features. This note also provides a discussion of the software architecture implica-
tions of HTML5 mobile application development. The work presented in this note is the result of an independent study in Carnegie
Mellon University’s Master of Information Technology - Embedded Software Engineering (MSIT-ESE) program.

14. SUBJECT TERMS

HTML5, mobile applications, edge environment

15. NUMBER OF PAGES

57

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Introduction
	2 Background
	3 Initial Evaluation: HTML5
	4 Follow-Up Evaluation: Bridging Frameworks
	5 Software Architecture Implications
	6 Related Work
	7 Summary and Conclusions
	Bibliography

